EXERCISES

Mathematica $6 \sim$ Lab Number 2

Problem 1. Use Plot3D to plot the function

$$
f(x, y)=\sin \{\pi \sin (x)+y\}
$$

on the region $-3<x, y<3$. Install the options

```
Boxed->False
Axes->None
```

Do the same after having installed the additional option Mesh->40.

Problem 2. The equations

$$
\begin{aligned}
& x^{2}+y^{2}=1 \\
& x^{3}+y^{3}=1 \\
& x^{10}+y^{10}=1
\end{aligned}
$$

provide implicit descriptions of a couple of curves, of which the first is familiar, the others aren't. Construct superimposed representations of the solutions of those three equations, subject to the stipulation that $-1.5<x, y<1.5$.

Do the same after having turned off the frame, turned on a pair of axes, and having installed this further option:

ContourStyle->\{\{Red,Thick\},\{Green,Thick, Dashed\},\{Blue,Thick\}\}.

Problem 3. We have seen that graphs of $x^{2 p}+y^{2 p}=1$ become "more and more nearly square" as p advances through the integers. The following figure illustrates the same phenomenon: use Plot3D to display the function

$$
g(x, y)=e^{-\left(x^{8}+y^{8}\right)}
$$

on the region $-2<x, y<2$, with these installed options:
Ticks->False, Mesh->25.
Now do the same after installation of this additional option:
PlotPoints->50. Note the improved resolution.

Problem 4. The equations

$$
\begin{array}{r}
x(s, t)=s \cos (2 \pi s+t) \\
y(s, t)=s \sin (2 \pi s+t)
\end{array}
$$

describe a t-indexed set of s-parameterized curves. Use ParametricPlot to draw the curve produced at $t=0$ as s ranges $0 \leqslant s \leqslant 10$.

Use Manipulate to construct a demonstration of how the curve is altered as t ranges on the interval $0 \leqslant t \leqslant 2 \pi$.

